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Abstract. Annealed random-bond lsing models with fNSt"0n for the square lattice in WO 
dimensions are considered. Three special models are solved exactly by mapping them to their 
dual models. Thermodynamic quantities are calculaled analytically for the three models. 

1. Introduction 

To explore some realistic properties in condensed matter, introducing randomness would 
be crucial. Randomness often causes drastic changes in thermodynamics. Spin glass is 
a typical example in which randomness in the inter-spin interaction causes frustration in 
dominant configurations of spins. The best model of spin glass is considered to be a 
quenched random-bond spin models; but it seems hard to solve such a model with quenched 
randomness exactly. Alternatively we can consider annealed randomness which also causes 
frustration. We will consider an annealed random-bond king model and show that the 
thermodynamics of some special models can be analysed by exact solutions. 

Usually an annealed random-bond king model is defined by a partition function 

where 6 +E 1 /T ,  M = #[bonds), and each bond interaction takes values *Jo with equal 
probabilities. Models we consider are, however, slightly modified ones: 

Here we assume the two-dimensional square lattice on a torus. The first sum is taken over all 
bonds (nearest-neighbour pairs) and the second is over all plaquettes (or unit squares). We 
can control the strength of the frustration by changing the real parameter g: as g becomes 
positive large the king spins tend to frustrate; as g becomes negative large the frustration 
gradually fades away. We show that the models are exactly solvable for three special values 
of g, which are: 

(i) g = 0, the ordinary annealed model (the trivial case); 
(ii) g = +CO, which we call the fullyfrustrated model; 
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(iii) g = -CO, which we call the frustration-forbidden model. 
These three models are related to king models without randomness in an infinite magnetic 
field, in a purely imaginary magnetic field, ix/2, and in a zero field, respectively. A general 
connection between models (1) and Ising models in a magnetic field will be established in 
section 3. The zero-field Ising model'was solved by Onsager [l] and the ix/2 field model 
was solved by McCoy and Wu [Z]. Therefore we can solve models (1) in the three cases 
using their solutions. This is the content of this paper. Unfortunately we cannot solve any 
models for other values of g. This is related to the fact that the king model in a generic 
magnetic field has not yet been solved. 

In this paper we summarize exact results for the three exactly solvable annealed random- 
bond king models. In section 2 we define the models. In section 3 we introduce dual modeh 
and establish the general connection mentioned above in a two-dimensional periodic square 
lattice. Explicit analytical expressions for the thermodynamic quantities for the three models 
are given in section 4 together with temperature-dependence figures. 

2. Models 

We limit ourselves to king models on the two-dimensional square lattice of N sites and M 
(= 2N)  bonds with periodic boundary conditions. Let U, E {+1, -1) be an Ising variable 
on a site a, and let &p E {+I, -1) be a random variable attached to a bond (a, p). Let 
J& > 0 be bond-dependent interaction constants, and let g.pys be the plaquette-dependent 
frustration strength and we think of these as parameters; see figure l(a). We consider 
annealed random-bond king models, defined by the partition functions 

where Lap = J,$/T. H& = gapy~J~pJ&J&l&/T ,  and T is the temperature. The 
annealing has already been performed we have assumed that T## are independent random 
variables and that each of them has a common probability distribution Prob(&p = +1) = 
Prob(rap = -1) = 1 2' 

1 
(4 (6) 

Figure 1. ( U )  The square lattice and its dud. (b) A set of bonds S (indicated by wavy lines); 
see (IO). 
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Historically models (1) for g < 0 were introduced in lattice gauge theories and the ones 
for g > 0 were once proposed as effective models of king spin glasses (cf [3]). 

It is easily seen that the interfacial free energies of the models are identically zero; the 
reason is quite simple: consider a model defined as in (2) but with the interaction constants 
Lnl,l+d, n = 1,2, . . . , in a row of horizontal bonds are replaced by -L,Z,ltnz, where 1 and 
2 are unit lattice vectors in the x and y directions, respectively, as indicated in figure I@). 
This row of horizontal bonds is considered as a boundary. Let Zi be the partition function 
of the model. If in Zi we negate all dummy variables ~ ~ 2 . ~ ~ ~ 2  in the row, we see that Zj 
has the same form as the original Z. This means that the free energies for the two models 
are identical; hence the interfacial free energy of model (2) is zero. 

We also note that a naive introduction of a magnetic field in models (2) does not result 
in any interesting magnetic properties. To see this add a new term hmcU to the exponent 
in (2) and let Zh be the partition function with this term, where we consider h, to be a 
magnetic field. We see readily that 

where Z is the partition function in zero field (2). Therefore, with respect to magnetic 
properties this model is identical to N free spins. 

By similar reasoning it is easily seen that the correlations of U variables are identically 
zero. Only mixed correlations among U and c variables can be non-trivial but we shall, 
however, not consider these in this paper. 

3. The dual models 

In this section we prove a general connection between the annealed random-bond king 
models (2) and king models in a magnetic field without randomness, which can be 
interpreted as a mapping from one to the other and vice versa. 

Consider king models in a magnetic field on the dual lattice: 

(see figure l(a)).  

Proposition. Provided that 

e-2Kufl = tanh Lap e-Wm = - tanh H&s (4) 

Z = ZN n e-K"fl cosh Le@ n e-H*fiv' cosh H& . Z ( H ) .  

the following identity holds 

(5 ) 
(U.8) (U.B.Y.8) 

In this sense we call models (3) the dual models to (2). 
The proof is elementary: we have to perform the high-temperature expansion of (2) and 

the low-temperature expansion of (3) (it will be helpful to use the standard polygon picture 
in interpreting the expansions); comparing both these expansions immediately yields (5). 
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We note that an extension of this identity, which is for a square lattice in two dimensions, 
to general lattices (including irregular ones) in arbitrary dimensions was established in [4]. 

Identity (5) gives us the following correspondence: models (2) for g > 0 (i.e. H' t 0) 
correspond to models (3) with magnetic field &pyS = + in/2, If$,, being real and 
positive (other choices for the imaginq part are possible), hence, e-'%A = tanh H&,S; 
models (2) for g c 0 (i.e. H" c 0) correspond to models (3) with magnetic field H,gVS > 0. 
In particular, a model (2) in the limit of g + +w corresponds to the king model in a pure 
imaginary magnetic field in/2 which was solved by McCoy and Wu [2], and model (2) in 
the limit of g + -w corresponds to the zero-field model solved by Onsager [l]. Note that 
in the limit g -+ +CO only such configurations of rs that cause frustration are allowed, and 
that only ones that cause no frustration are allowed in the l i i i t  g + -w. 

Correlation functions for the dual models have an interesting interpretation when they 
are translated into the original models (2). 

Proposition. Let g # 0 and let (.. . ) H  be the statistical average in the dual model (3). 
Then 

zd = z ,  (U: (6) 

where Z is the partition function (2), and Z,j is the partition function of a disturbed model 
defined by replacing plaquette constants g ,  at xi to -g, for all i = 1, . . . , n in (2). 

We can think of the disturbed model as a model with defects at the plaquettes XI, . . . , x,. 
The proof is easy (use U = exp(-inu72) in the RHS); so we omit it. From this the free 
energy shift caused by the defects is 

In the special cases H = in/2 and H = 0 the correlations (U;, . . . U;*)H can be calculated 
analytically [2 ,5 ] ;  hence we can calculate the AdF for the fully frustrated model and the 
frustration-forbidden model, respectively. This will be done in next section for two-point 
functions (n = 2) with 1x2 - XI I >> 1. 

4. Exactly solvable models 

In this section we give explicit analytical expressions for several thermodynamic quantities 
for the three solvable models, which are the free energy, the internal energy, the specific 
heat, and the entropy 

and the free energy shift (7). In the cases g = &w final expressions will be given for the 
homogeneous models in which L,p = L for all bonds. 



Exactly solvable annealed random-bond {sing models 4087 

4.1. The annealed model without constraint (g = 0 )  

First consider the ordinary annealed model without constraint, g = 0. The partition function 
is computed as (perform the summation over t configurations first) 

We have written ZO to indicate that it is the partition function for g = 0. The free energy, 
the intemal energy, the specific heat and the entropy are: 

1 - fa /T  = log 2 + - log cosh 
(0) 

respectively. 
In figure 2 their temperature dependences are shown for the homogeneous case Lap = L. 

Leading terms near T = 0 are fo % -2 f Tlog2, uo % -2, CO % (8/T2)exp(-2/T) and 
SO % -log2 + (4/T)exp(-2/T); behaviours at high temperature are fo % -T log2, 
ug M -ZIT, CO 4 2/T2 and so 4 log2. 

Negative entropy appears at low temperature because of our normalization in (8) 
which is artificial; if we count the degrees of freedom of the z variables correctly as 
20 E, E,, exp E Lruo,  then the entropy becomes positive even at T = 0 (log2 at 
T = 0) and the free energy becomes a decreasing function near T = 0. 

4.2. The fully frustrated model ( g  = +a) 
Now we consider the fully frustrated model g = +w. We first calculate the partition 
function for the corresponding dual model, (3) with H = in/2, and later interpret the 
results as those for the fully frustrated model g = +w. The computation is described in 
some detail. 

Let Hapya = in/2 in (3). The high-temperature expansion yields 

Z(in/2) = 2N n cosh K,p . G 
(U.P) 

where 
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internal energy 
I I 2 3  4 5  

free energy 

specific heat 

entropy 

-0.6 -0.4 I i 
Figure 2. The intemal energy U, the specific heat c. the free energy f and the entropy s are 
drawn as functions of tempemNre T for the fully frustrated model g = +m (thick lines); the 
annealed model 8 = 0 (medium lines); the frustration-forbidden model g = -m (light lines). 
respectively (unit of energy is Jo). The partition functions are iomalized in such n way that 
z + zN in the non-interaction limit. 

Here S is a set of vertical bonds indicated by wavy lines in figure l(6); #S = N/2.  In the 
following we assume that N is a multiple of 4. Rewriting the first line as the second is a 
key step [2]: the latter is exactly the N-point correlation function of the zero-field model 
which can be computed by the method developed by Montroll et a1 [5]. We can write 

1 G = -  
2 N  t 

= PfA (10) 

where means the product over bonds which do not belong to S, and Pf A is a Pfaffian of 
an antisymmetric matrix A. The A is a 4 N  x 4N matrix defined as in appendix A.1 except 
that ~ ~ - 2 . ~  for a E (a set of sites indicated by in figure l(6)) and zu..+2 for ez E (a set 
of sites indicated by o in figure l(b)) are replaced by their inverses; here 2.8 = tanh K,): 
and 1 and 2 are unit lattice vectors in the x and y directions, respectively, as indicated in 
figure l(6). (The description here would be clear enough if we are familiar with the Pfaffian 
method of Montroll et a1 [5]. )  

To proceed further we set z.~ = ZI = tanh K I  for horizontal bonds and zap = zz = 
tanhKz for vertical bonds. Then we can evaluate the Pfaffian using (PfA)2 = detA as in 
[5] and [2]: noting that the block matrix A is invariant under translations by one unit in 
the x direction and by two units in the y direction, the Fourier transform converts A into 
block-diagonal form in which each block is an 8 x 8 matrix: the determinant is therefore 
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calculable by hand. The result is [Z] 

4089 

where 

- (1 - z,) 2 2  z, 2 (cos p2)2 - (1 - z:)Zz; (cos tr 1 
and the (o-integrations appear instead of summations because we have already taken the 
thermodynamic limit. It gives the free energy of the fully frustrated model (the model (2) 
in the limit g -+ +m, i.e. H* + +CO): 

2 2 2  1 
- l ~ g [ Z / ( c o s h H * ) ~ ] ~ . = o  = ; l~gZ+Li+Lz+--  ; (2;)2 /J; dPl d(o2 1% I(1 + 22)  ?I 
N 

+ (I+z:)2z;-(I -zyz:cosvZ-(l - z J  2 2 2  z2cosPl] 

where zi = e-2La = tanh Kj (i = 1.2). We re-define 

Z+, = [Z/(COS~H*)~]H.,+& 

and regard this as the partition function of the model; the normalization has been chosen in 
such a way that if we set z1 = zz = 1 (i.e. L1 = Lz = 0) we get ( 1 / N )  log Z+, = log 2. 

In order to avoid inessential complexity we further limit ourselves to the isotropic model: 

0 -2L L l = L z = L = J / T  Z I = Z ~ = Z = ~  . 
Then 

/lx drpl d a  l0g(4(cothZL)~ - 2(cos(o1 +cos(02)}. 
1 

-logZ+,=$log2sinh2L+- 

(11) 
N (ZR)2 

The standard manipulation yields (as in [ l ]  and [6]; see appendix A.2) 

f -  
T - N  

- - _ -  

(12) 

where k = (tanhZL)>, 0 c k < 1. 

heat: 
Differentiating (12) we get analytical expressions for the internal energy and the specific 

(13) 
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where K(k) and E(k) are the complete elliptic integral of the first and the second kind, of 
modulus k: 

We have used a simple identity: 

where A = (1 - k2sin'$)'fl and 

The elliptic integral K(k) has a singularity at k = 1: in a neighbourhood of which 

where k' = (see, e.g., 171, formulae 900.05 and 900.10). In the Onsager's solution 
[ 11 thii singularity corresponds to the critical point at which the second-order phase transition 
occurs. In the fully frustrated model we are analysing, the singular point k (tanh2L)' = 1 
(L = J " / T )  corresponds to zero temperature; and hence the phase transition can occur at 
T = 0. 

In figure 2 we show the internal energy, the specific heat, the free energy and the entropy 
as functions of T / J o  (the integration in (12) was performed numerically). Leading terms 
in the low-high-temperature limit are obtained for (13) and (14); for T + Ot: 

and for T --f +CO: 

2 14 304 1 c = _ _ _  + 2 14 1 304 1 
U = -- f -- - --+. . . 

T 3 T3 15 T5 T' T4 3 T6 

Here we have set J o  
The internal energy is -1 at T = 0 because of the constlaint on con6gurations. The 

entropy remains positive since there are a huge number of minimum energy states. 
The correlation (u,+;)H for large 1x1 was computed by McCoy and Wu 121 which 

would be identified with the square of the spontaneous magnetization of the dual model: 
(3) with H = ix/2. Their result reads (equation (4.41) in [2]): 

1. 

c0sh2.L)~ 1'4 
( '$o:)H= [' cosh41 ] 
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(* g = tinfty *) 

effect of two-defects 

- 0 . 2 7  

-0.8 

-I 

(* p - -infty *) 

effect of two-defects 

0.6 
0.4 
0.2 

O 1 2 3 4 5  
( b )  

Figure 3. The free energy shifts caused by two defects for the fully frustrated model and the 
frustration-forbidden model. 

for all temperature (note that the critical temperature of the McCoy-Wu model [2] is +CO) 

and then we obtain the free energy shift: 

AdF E Fd - F = -TlOg(Zd/Z) 
1 (cosh 2L)4 - - -_ 4Tlog 

cosh41 
for all temperature (1 = J o / T ) ;  see figure 3. Defects lower the free energy because they 
allow local energy-minimum configurations around them. 

4.3. The frustration-forbidden model ( g  = -CO) 

The frustration-forbidden model g = -CO comesponds to the zero-field Ising model. The 
solution to the latter by Onsager [l] is famous. We only quote final expressions. 

The partition function in the thermodynamic l i t  for the model Lap = L1, LZ for 
vertical, horizontal bonds, respectively, is 

- 2(1 -z~)tlcos(0z-2~1-zZ:~zZcOS(01] 

where zi = = tanh Kj (i = 1,2). We re-define 

2-, [Z/(cosh H * ) N ] ~ * , - ,  

and regard this as the partition function of the model; the normalization has been chosen in 
such a way that if we set z1 = z2 = 1 we get (1/N) log Z-, = log2. 

We further specialize the model to 
L 1 = L z = L  z ~ = z z - z ~ ~  -2L . 

Then 
1 - log 2-, = f log 2 sinh 2L 

N 
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where k 2 sinh 2L/(cosh 2L)2, 0 < k < 1. 
The internal energy and the specific heat are 

U = - J ° F  1 +k’ (1 + :k’K(k)) 

where k’ 2(tat1h2L)~ - 1. 
A singularity occurs at k = 1, which corresponds to the critical temperature 

= 2.269 185.. . . 2 
TJJ’ = 

log(l/.Jz - 17 

Hence the phase transition occurs at T = T,. 
In figure 2 we show the internal energy, the specific heat, the free energy and the entropy 

as functions of T / J o  (the integration in (17) was performed numerically). The results show 
that there is an order at low temperature; there are many ordered states according to many 
T configurations. 

The correlation (u$u:)~ for large 1x1, which would be identified with the square of the 
spontaneous magnetization of the dual model (3) with H = 0, is (see 151): 

[ l  - ( ~ i n h 2 L ) ~ I ” ~  for T t Tc 
for T < Tc. 

(u;u;,H = 

This gives the free energy shift 

-$T log[l - (~ inh2L)~I  for T > Tc 
for T c Tc. 

AdF = 

See figure 3. The total free energy increases divergently if defects are introduced (at low 
temperature) because the defects destroy the ordered configurations. A word of caution: 
infinity appears in equation (20) because, by definition, AdF is a shift of total free energy; 
a shift of per-site free energy tends to zero. More precisely, by [SI, we know that it grows 
infinitely as 

A$= ~ T ( l o g I x I + 2 1 ~ ~ l o g ( e ~ ~ t a n h L ) ) + ~ ~ .  T c Tc 

as 1x1 + +co (1x1 is the distance between the two defects). 

5. Summary 

We have considered annealed random-bond king models with frustration (2) [or (I)] on 
the two-dimensional square lattice with periodic boundary conditions. In section 3 we 
established a general connection between the annealed random-hand king models with 
frustration (2) and Ising models in a magnetic field (3). Note that the various constants 
La,+, H&!, etc. are not necessarily constrained to real values in this connection (for a 
generalizatmn see [4]). We saw that three special models are exactly solvable: these are the 
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trivial model (g = O), the fully frushated model (g = +CO), and the frustration-forbidden 
model (g = -eo). In section 4 we gavc cxact analytical expressions for thermodynamic 
quantities for the three solvable models. It was seen that phase transitions do not occur at 
finite temperature for the models g = 0, +CO, and that the second-order phase transition 
occurs for the g = -CO model. 

Finally, it would be of great interest to draw a T against g phase diagram for the model 
(1). The analytical approach in this direction does not, however, seem easy and was beyond 
the scope of this paper. 

Appendix 

We assemble here the standard techniques for the king problem. The derivation of 
equation (10) in the text is based on the Pfaffian method of Montroll et a1 [5] (section A.l). 
Section A.2 is devoted to a technique which is used from (11) to (12). and (16) to (17) in 
the text (cf [l] and [6]). 

A.1. PfajJian representation of the partition function 

In the Ising problem we often encounter the following expression: 

where the product is over all bonds. We have formulated the problem using a dual lattice 
as in the text. If the lattice under consideration is a two-dimensional square lattice we can 
write 

G = P f A  

where PfA is a Pfailian of an anti-symmetric matrix A; the A is a 4N x 4 N  matrix defined 
by 

0 1 -1 -1 
-1 0 1 A = [ A@;@) I;:] A ( a ; a ) =  [ -1 0 yl] 

-1 0 

0 Z,..+l 0 0 0 0 0 0  
A ( u ; a + l ) = [ i  0 : 0 0  :] A(u:u-l)=[-'$'. : :] 

A ( u ; u + 2 ) = [  0 0 0  0 0 0 zu.n+z ] A(a:a-2)=[ :  : : , i]. 
0 0 0  

and 

0 0 0  0 0 0  0 

0 0 0  0 0 -z,-z.. 

Here 1 and 2 are unit lattice vectors in the x and y directions, respectively, as indicated in 
figure l(b).  Four columns (or rows) of the matrices correspond to sites R, L, U, D of the 
decorated lattice, as shown in figure A1 (standard notation; see [SI). 
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i 

i ? 
Figure Al.  The decorated lauice obtained by dvhg S t N C U U e  lo the lattice sites (of the dual 
lattice). 

A.2. Reduction of a double integral ro a single one 
Here we describe a way to reduce double integrals which are often encountered in calculating 
the king partition functions. 

where D is a constant. We follow the standard manipulation (cf [I] or [6]). Changing 
integral variables to $1 = (91 +&)/2, h = 'pi -pz and the region of integration to 0 c 41, 
h c: x yield 

1 I  D 
d$l log(2cos$l)+ G J ~  d h  cosh-' (-) 2 cos $1 

We have used an identity: 
R 

1x1 = :1 dt log(2coshx - 2cost). 
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Since cosh-’ x = log(x + m) we can write the integrand in the second term by log. 
Finally 

where k 2 1 0 .  
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